.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples\gallery_examples\005_xtract_feature.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_gallery_examples_005_xtract_feature.py: .. _xtract_feature_example: Use the Xtract feature ---------------------- This example shows how to use the Xtract feature in PyAnsys Sound. It demonstrates different capabilities of this feature, such as noise extraction, tonal extraction, and transient extraction. .. GENERATED FROM PYTHON SOURCE LINES 34-38 .. code-block:: Python # Maximum frequency for STFT plots, change according to your need MAX_FREQUENCY_PLOT_STFT = 5000.0 .. GENERATED FROM PYTHON SOURCE LINES 39-43 Set up analysis ~~~~~~~~~~~~~~~ Setting up the analysis consists of loading Ansys libraries, connecting to the DPF server, and retrieving the example files. .. GENERATED FROM PYTHON SOURCE LINES 43-72 .. code-block:: Python # Load Ansys libraries. import os import matplotlib.pyplot as plt import numpy as np from ansys.sound.core.examples_helpers import ( download_xtract_demo_signal_1_wav, download_xtract_demo_signal_2_wav, ) from ansys.sound.core.server_helpers import connect_to_or_start_server from ansys.sound.core.signal_utilities import CropSignal, LoadWav from ansys.sound.core.spectrogram_processing import Stft from ansys.sound.core.xtract import ( Xtract, XtractDenoiser, XtractDenoiserParameters, XtractTonal, XtractTonalParameters, XtractTransient, XtractTransientParameters, ) # Connect to a remote server or start a local server my_server = connect_to_or_start_server(use_license_context=True) .. GENERATED FROM PYTHON SOURCE LINES 76-82 Define a custom function for STFT plots ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Define a custom function for STFT plots lets you have more control over what you are displaying. While you could use the ``Stft.plot()`` method, the custom function defined here restricts the frequency range of the plot. .. GENERATED FROM PYTHON SOURCE LINES 82-137 .. code-block:: Python def plot_stft(stft_class, SPLmax, title="STFT", maximum_frequency=MAX_FREQUENCY_PLOT_STFT): """Plot a short-term Fourier transform (STFT) into a figure window. Parameters ---------- stft_class: Stft Object containing the STFT. SPLmax: float Maximum value (here in dB SPL) for the colormap. title: str Title of the figure. maximum_frequency: float Maximum frequency in Hz to display. """ out = stft_class.get_output_as_nparray() # Extract first half of the STFT (second half is symmetrical) half_nfft = int(out.shape[0] / 2) + 1 magnitude = stft_class.get_stft_magnitude_as_nparray() # Voluntarily ignore a numpy warning np.seterr(divide="ignore") magnitude = 20 * np.log10(magnitude[0:half_nfft, :]) np.seterr(divide="warn") # Obtain sampling frequency, time steps, and number of time samples fs = 1.0 / ( stft_class.signal.time_freq_support.time_frequencies.data[1] - stft_class.signal.time_freq_support.time_frequencies.data[0] ) time_step = np.floor(stft_class.fft_size * (1.0 - stft_class.window_overlap) + 0.5) / fs num_time_index = len(stft_class.get_output().get_available_ids_for_label("time")) # Define boundaries of the plot extent = [0, time_step * num_time_index, 0.0, fs / 2.0] # Plot plt.figure() plt.imshow( magnitude, origin="lower", aspect="auto", cmap="jet", extent=extent, vmax=SPLmax, vmin=(SPLmax - 70.0), ) plt.colorbar(label="Magnitude (dB SPL)") plt.ylabel("Frequency (Hz)") plt.xlabel("Time (s)") plt.ylim([0.0, maximum_frequency]) # Change the value of MAX_FREQUENCY_PLOT_STFT if needed plt.title(title) plt.show() .. GENERATED FROM PYTHON SOURCE LINES 138-142 Load a demo signal for Xtract ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Load a demo signal from a WAV file using the ``LoadWav`` class. The WAV file contains harmonics and shocks. .. GENERATED FROM PYTHON SOURCE LINES 142-167 .. code-block:: Python # Return the input data of the example file path_xtract_demo_signal_1 = download_xtract_demo_signal_1_wav(my_server) # Load the WAV file wav_loader = LoadWav(path_to_wav=path_xtract_demo_signal_1) wav_loader.process() # Plot the signal in time domain time_domain_signal = wav_loader.get_output()[0] time_vector = time_domain_signal.time_freq_support.time_frequencies.data plt.plot(time_vector, time_domain_signal.data) plt.title("Xtract Demo Signal 1") plt.grid(True) plt.xlabel("Time (s)") plt.ylabel("Amplitude (Pa)") plt.show() # Compute the spectrogram of the signal and plot it stft_original = Stft(signal=wav_loader.get_output()[0], fft_size=1024, window_overlap=0.9) stft_original.process() max_stft = 20 * np.log10(np.max(stft_original.get_stft_magnitude_as_nparray())) plot_stft(stft_original, SPLmax=max_stft, maximum_frequency=20000.0) .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_001.png :alt: Xtract Demo Signal 1 :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_001.png :class: sphx-glr-multi-img * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_002.png :alt: STFT :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_002.png :class: sphx-glr-multi-img .. GENERATED FROM PYTHON SOURCE LINES 168-171 Use individual extraction features ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The following topics show how to use different capabilities of Xtract independently. .. GENERATED FROM PYTHON SOURCE LINES 173-176 Noise extraction ^^^^^^^^^^^^^^^^ The goal is to isolate a fan noise deprived of any tonal content in the demo signal. .. GENERATED FROM PYTHON SOURCE LINES 176-207 .. code-block:: Python # Create a noise pattern using the first two seconds of the signal. # First crop the first two seconds of the signal. signal_cropper = CropSignal(signal=time_domain_signal, start_time=0.0, end_time=2.0) signal_cropper.process() cropped_signal = signal_cropper.get_output() # Then use the 'XtractDenoiserParameters' class to create the noise pattern. xtract_denoiser_params = XtractDenoiserParameters() xtract_denoiser_params.noise_psd = xtract_denoiser_params.create_noise_psd_from_noise_samples( signal=cropped_signal, sampling_frequency=44100.0, window_length=100 ) # Denoise the signal using the 'XtractDenoiser' class. xtract_denoiser = XtractDenoiser( input_signal=time_domain_signal, input_parameters=xtract_denoiser_params ) xtract_denoiser.process() noise_signal = xtract_denoiser.get_output()[1] # Plot the original signal and the noise signal in the same window plt.plot(time_vector, time_domain_signal.data, label="Original Signal") plt.plot(time_vector, noise_signal.data, label="Noise Signal") plt.grid(True) plt.xlabel("Time (s)") plt.ylabel("Amplitude (Pa)") plt.title("Original Signal and Noise Signal") plt.legend() plt.show() .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_003.png :alt: Original Signal and Noise Signal :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_003.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 208-211 Tone extraction ^^^^^^^^^^^^^^^ The goal is to isolate the tones using the right settings. .. GENERATED FROM PYTHON SOURCE LINES 211-226 .. code-block:: Python # Try a first attempt of tone extraction with a # First set of parameters using the 'XtractTonalParameters' class. xtract_tonal_params = XtractTonalParameters() xtract_tonal_params.regularity = 1.0 xtract_tonal_params.maximum_slope = 1000.0 xtract_tonal_params.minimum_duration = 0.22 xtract_tonal_params.intertonal_gap = 10.0 xtract_tonal_params.local_emergence = 2.0 xtract_tonal_params.fft_size = 2048 ## Now perform the tonal extraction using the 'XtractTonal' class xtract_tonal = XtractTonal(input_signal=time_domain_signal, input_parameters=xtract_tonal_params) xtract_tonal.process() .. GENERATED FROM PYTHON SOURCE LINES 227-228 Plot the spectrogram to assess the quality of the output. .. GENERATED FROM PYTHON SOURCE LINES 228-240 .. code-block:: Python stft_modified_signal = Stft(signal=xtract_tonal.get_output()[0], fft_size=1024, window_overlap=0.9) stft_modified_signal.process() print("Plot of the spectrograms with tonal extraction parameters that do not work.") ## Spectrogram of the original signal plot_stft(stft_original, SPLmax=max_stft, title="Original Signal") ## Spectrogram of the modified signal plot_stft(stft_modified_signal, SPLmax=max_stft, title="Extracted Tones") # You can see from the obtained plot that the tones are not properly extracted. .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_004.png :alt: Original Signal :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_004.png :class: sphx-glr-multi-img * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_005.png :alt: Extracted Tones :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_005.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none Plot of the spectrograms with tonal extraction parameters that do not work. .. GENERATED FROM PYTHON SOURCE LINES 241-242 Try again with a different parameter for the maximum slope. .. GENERATED FROM PYTHON SOURCE LINES 242-254 .. code-block:: Python xtract_tonal_params.maximum_slope = 5000.0 xtract_tonal.process() # Recheck the plots print("Plot of the spectrograms with the right tonal extraction parameters.") plot_stft(stft_original, SPLmax=max_stft, title="Original Signal") # Spectrogram of the modified signal stft_modified_signal.signal = xtract_tonal.get_output()[0] stft_modified_signal.process() plot_stft(stft_modified_signal, SPLmax=max_stft, title="Extracted Tones") .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_006.png :alt: Original Signal :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_006.png :class: sphx-glr-multi-img * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_007.png :alt: Extracted Tones :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_007.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-script-out .. code-block:: none Plot of the spectrograms with the right tonal extraction parameters. .. GENERATED FROM PYTHON SOURCE LINES 255-263 Transient extraction ^^^^^^^^^^^^^^^^^^^^ The goal is to isolate the transients using the right settings. While these settings are not as easy to handle, they are well explained in the tutorial videos installed with the Ansys Sound Analysis and Specification (SAS) standalone application (with the user interface). You can also find the `SAS - XTRACT transient `_ videos on the Ansys Learning Hub. .. GENERATED FROM PYTHON SOURCE LINES 263-288 .. code-block:: Python # Create a set of transient parameters. # This example assumes that the best minimum and maximum thresholds are known. # You can use the SAS interface to help set up these thresholds interactively. xtract_transient_params = XtractTransientParameters(lower_threshold=51.5, upper_threshold=60.0) # Perform the transient extraction using the 'XtractTransient' class. xtract_transient = XtractTransient( input_signal=time_domain_signal, input_parameters=xtract_transient_params ) xtract_transient.process() transient_signal = xtract_transient.get_output()[0] # Plot the original signal and the transient signal in the same window plt.plot(time_vector, time_domain_signal.data, label="Original Signal", linewidth=0.1) plt.plot(time_vector, transient_signal.data, label="Transient Signal", linewidth=0.1) plt.grid(True) plt.xlabel("Time (s)") plt.ylabel("Amplitude (Pa)") plt.title("Original Signal and Transient signal") leg = plt.legend() for line in leg.get_lines(): line.set_linewidth(0.5) plt.show() .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_008.png :alt: Original Signal and Transient signal :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_008.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 289-293 Use a combination of extraction features and loop on several signals ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The idea here is to loop over several signals and use the ``Xtract`` class to combine all previous classes. .. GENERATED FROM PYTHON SOURCE LINES 293-358 .. code-block:: Python path_xtract_demo_signal_2 = download_xtract_demo_signal_2_wav(my_server) paths = [path_xtract_demo_signal_1, path_xtract_demo_signal_2] # Instantiate the 'Xtract' class with the parameters previously set xtract = Xtract( parameters_denoiser=xtract_denoiser_params, parameters_tonal=xtract_tonal_params, parameters_transient=xtract_transient_params, ) # Loop over all signal paths contained in the 'paths' variable for p in paths: # Name the signal using the file name signal_name = os.path.basename(p) # Load the signal wav_loader.path_to_wav = p wav_loader.process() time_domain_signal = wav_loader.get_output()[0] # Plot the time domain signal ylims = [-3.0, 3.0] plt.figure() plt.plot(time_vector, time_domain_signal.data, label="Original Signal") plt.ylim(ylims) plt.ylabel("Amplitude (Pa)") plt.xlabel("Time (s)") plt.grid() plt.legend() plt.title(signal_name) plt.show() # Compute and plot the STFT stft_original.signal = time_domain_signal stft_original.process() plot_stft(stft_class=stft_original, SPLmax=max_stft, title=f"STFT for signal {signal_name}") # Use Xtract with the loaded signal xtract.input_signal = time_domain_signal xtract.process() # Collect outputs and plot everything in one window noise_signal, tonal_signal, transient_signal, remainder_signal = xtract.get_output() f, axs = plt.subplots(nrows=5) axs[0].plot(time_vector, time_domain_signal.data, label="Original Signal", color="blue") axs[1].plot(time_vector, noise_signal.data, label="Noise Signal", color="red") axs[2].plot(time_vector, tonal_signal.data, label="Tonal Signal", color="green") axs[2].set(ylabel="Amplitude (Pa)") # Set ylabel for middle plot only axs[3].plot(time_vector, transient_signal.data, label="Transient Signal", color="purple") axs[4].plot(time_vector, remainder_signal.data, label="Remainder Signal", color="black") for ax in axs: ax.set_ylim(ylims) ax.grid() ax.legend() ax.set_aspect("auto") plt.xlabel("Time (s)") plt.legend() plt.suptitle(f"Original and extracted signals for {signal_name}") plt.show() .. rst-class:: sphx-glr-horizontal * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_009.png :alt: xtract_demo_signal_1.wav :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_009.png :class: sphx-glr-multi-img * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_010.png :alt: STFT for signal xtract_demo_signal_1.wav :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_010.png :class: sphx-glr-multi-img * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_011.png :alt: Original and extracted signals for xtract_demo_signal_1.wav :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_011.png :class: sphx-glr-multi-img * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_012.png :alt: xtract_demo_signal_2.wav :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_012.png :class: sphx-glr-multi-img * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_013.png :alt: STFT for signal xtract_demo_signal_2.wav :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_013.png :class: sphx-glr-multi-img * .. image-sg:: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_014.png :alt: Original and extracted signals for xtract_demo_signal_2.wav :srcset: /examples/gallery_examples/images/sphx_glr_005_xtract_feature_014.png :class: sphx-glr-multi-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (13 minutes 2.220 seconds) .. _sphx_glr_download_examples_gallery_examples_005_xtract_feature.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 005_xtract_feature.ipynb <005_xtract_feature.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 005_xtract_feature.py <005_xtract_feature.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: 005_xtract_feature.zip <005_xtract_feature.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_