.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "examples\gallery_examples\006_calculate_PR_and_TNR.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code. .. rst-class:: sphx-glr-example-title .. _sphx_glr_examples_gallery_examples_006_calculate_PR_and_TNR.py: .. _calculate_PR_and_TNR: Calculate TNR and PR -------------------- This example shows how to calculate tone-to-noise ratio (TNR) and prominence ratio (PR) following the ECMA 418-1 and ISO 7779 standards. It also extracts the desired TNR and PR information. .. GENERATED FROM PYTHON SOURCE LINES 35-39 Set up analysis ~~~~~~~~~~~~~~~ Setting up the analysis consists of loading Ansys libraries, connecting to the DPF server, and retrieving the example files. .. GENERATED FROM PYTHON SOURCE LINES 39-53 .. code-block:: Python # Load Ansys libraries. from ansys.dpf.core import TimeFreqSupport, fields_factory, locations import numpy as np from ansys.sound.core.examples_helpers import download_flute_psd, download_flute_wav from ansys.sound.core.psychoacoustics import ProminenceRatio, ToneToNoiseRatio from ansys.sound.core.server_helpers import connect_to_or_start_server from ansys.sound.core.signal_utilities import LoadWav from ansys.sound.core.spectral_processing import PowerSpectralDensity # Connect to a remote server or start a local server. my_server = connect_to_or_start_server(use_license_context=True) .. GENERATED FROM PYTHON SOURCE LINES 54-58 Calculate TNR from a PSD ~~~~~~~~~~~~~~~~~~~~~~~~ Load a power spectral density (PSD) stored as a text file and then use it to create a field that serves as an input for the TNR calculation. .. GENERATED FROM PYTHON SOURCE LINES 58-96 .. code-block:: Python # Load the PSD contained in an ASCII file. This file has two columns: 'Frequency (Hz)' # and 'PSD amplitude (dB SPL/Hz)'. The data is located in # "C:\Users\username\AppData\Local\Ansys\ansys_sound_core\examples\". path_flute_psd = download_flute_psd() fid = open(path_flute_psd) fid.readline() # Skip the first line (header) all_lines = fid.readlines() fid.close() # Create the array of PSD amplitude values. psd_dBSPL_per_Hz = [] frequencies_original = [] for line in all_lines: splitted_line = line.split() psd_dBSPL_per_Hz.append(float(splitted_line[1])) frequencies_original.append(float(splitted_line[0])) # Convert amplitudes in dBSPL/Hz into power in Pa^2/Hz. psd_dBSPL_per_Hz = np.array(psd_dBSPL_per_Hz) psd_Pa2_per_Hz = np.power(10, psd_dBSPL_per_Hz / 10) * 4e-10 # The TNR/PR operators require the frequency array to be regularly spaced. # Thus, the original frequencies are interpolated to regularly spaced points. frequencies_interp = np.linspace(0, 22050, len(frequencies_original)) psd_Pa2_per_Hz_interp = np.interp(frequencies_interp, frequencies_original, psd_Pa2_per_Hz) # Create the input PSD field for computation of TNR and PR. f_psd = fields_factory.create_scalar_field(num_entities=1, location=locations.time_freq) f_psd.append(psd_Pa2_per_Hz_interp, 1) # Create and include a field containing the array of frequencies. support = TimeFreqSupport() f_frequencies = fields_factory.create_scalar_field(num_entities=1, location=locations.time_freq) f_frequencies.append(frequencies_interp, 1) support.time_frequencies = f_frequencies f_psd.time_freq_support = support .. GENERATED FROM PYTHON SOURCE LINES 97-98 Create a ``ToneToNoiseRatio`` object, set the created PSD field as input, and compute the TNR. .. GENERATED FROM PYTHON SOURCE LINES 98-101 .. code-block:: Python tone_to_noise_ratio = ToneToNoiseRatio(psd=f_psd) tone_to_noise_ratio.process() .. GENERATED FROM PYTHON SOURCE LINES 102-103 Print results. .. GENERATED FROM PYTHON SOURCE LINES 103-119 .. code-block:: Python number_tones = tone_to_noise_ratio.get_nb_tones() TNR = tone_to_noise_ratio.get_max_TNR_value() TNR_frequencies = tone_to_noise_ratio.get_peaks_frequencies() TNR_values = tone_to_noise_ratio.get_TNR_values() TNR_levels = tone_to_noise_ratio.get_peaks_levels() print( f"\n" f"Number of tones found: {number_tones}\n" f"Maximum TNR value: {np.round(TNR, 1)} dB\n" f"All detected peaks' frequencies (Hz): " f"{np.round(TNR_frequencies)}\n" f"All peaks' TNR values (dB): {np.round(TNR_values, 1)}\n" f"All peaks' absolute levels (dB SPL): {np.round(TNR_levels, 1)}\n" ) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of tones found: 11 Maximum TNR value: 38.0 dB All detected peaks' frequencies (Hz): [ 261. 525. 786. 1047. 1311. 1572. 1836. 2097. 2361. 2632. 2888.] All peaks' TNR values (dB): [38. 37.8 34.4 29.5 22.4 25.9 32.7 18. 9.7 10.4 0.3] All peaks' absolute levels (dB SPL): [71.1 79.3 76.9 68.2 62. 68.6 72.6 63.1 55.2 52.8 44.5] .. GENERATED FROM PYTHON SOURCE LINES 120-121 Plot the TNR over frequency. .. GENERATED FROM PYTHON SOURCE LINES 121-123 .. code-block:: Python tone_to_noise_ratio.plot() .. image-sg:: /examples/gallery_examples/images/sphx_glr_006_calculate_PR_and_TNR_001.png :alt: Tone-to-noise ratio :srcset: /examples/gallery_examples/images/sphx_glr_006_calculate_PR_and_TNR_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 124-125 Recalculate the TNR for specific frequencies. .. GENERATED FROM PYTHON SOURCE LINES 125-129 .. code-block:: Python frequencies_i = [261, 525, 786, 1836] tone_to_noise_ratio = ToneToNoiseRatio(psd=f_psd, frequency_list=frequencies_i) tone_to_noise_ratio.process() .. GENERATED FROM PYTHON SOURCE LINES 130-131 Print information for a specific detected peak. .. GENERATED FROM PYTHON SOURCE LINES 131-143 .. code-block:: Python tone_to_noise_ratio_525 = tone_to_noise_ratio.get_single_tone_info(tone_index=1) TNR_frequency = tone_to_noise_ratio_525[0] TNR_width = tone_to_noise_ratio_525[4] - tone_to_noise_ratio_525[3] TNR = tone_to_noise_ratio_525[1] print( f"\n" f"TNR info for peak at ~525 Hz: \n" f"Exact tone frequency: {round(TNR_frequency, 2)} Hz\n" f"Tone width: {round(TNR_width, 2)} Hz\n" f"TNR value: {round(TNR, 2)} dB\n\n" ) .. rst-class:: sphx-glr-script-out .. code-block:: none TNR info for peak at ~525 Hz: Exact tone frequency: 524.87 Hz Tone width: 48.45 Hz TNR value: 37.84 dB .. GENERATED FROM PYTHON SOURCE LINES 144-147 Calculate PR from a PSD ~~~~~~~~~~~~~~~~~~~~~~~ Use the PowerSpectralDensity class to calculate a PSD, and compute Prominence Ratio (PR). .. GENERATED FROM PYTHON SOURCE LINES 147-154 .. code-block:: Python # Load example data from WAV file. path_flute_wav = download_flute_wav(server=my_server) wav_loader = LoadWav(path_flute_wav) wav_loader.process() flute_signal = wav_loader.get_output()[0] .. GENERATED FROM PYTHON SOURCE LINES 155-156 Create a PowerSpectralDensity object, set its input signal and parameters, and compute the PSD. .. GENERATED FROM PYTHON SOURCE LINES 156-161 .. code-block:: Python psd_object = PowerSpectralDensity( flute_signal, fft_size=8192, window_type="HANN", window_length=8192, overlap=0.8 ) psd_object.process() .. GENERATED FROM PYTHON SOURCE LINES 162-163 Get the computed PSD as a Field. .. GENERATED FROM PYTHON SOURCE LINES 163-165 .. code-block:: Python f_psd = psd_object.get_output() .. GENERATED FROM PYTHON SOURCE LINES 166-167 Create a ProminenceRatio object, set the computed PSD as input, and compute the PR. .. GENERATED FROM PYTHON SOURCE LINES 167-170 .. code-block:: Python prominence_ratio = ProminenceRatio(psd=f_psd) prominence_ratio.process() .. GENERATED FROM PYTHON SOURCE LINES 171-172 Print the results. .. GENERATED FROM PYTHON SOURCE LINES 172-186 .. code-block:: Python number_tones = prominence_ratio.get_nb_tones() PR = prominence_ratio.get_max_PR_value() PR_frequencies = prominence_ratio.get_peaks_frequencies() PR_values = prominence_ratio.get_PR_values() PR_levels = prominence_ratio.get_peaks_levels() print( f"\n" f"Number of tones found: {number_tones}\n" f"Maximum PR value: {np.round(PR, 1)} dB\n" f"All detected peaks' frequencies (Hz): {np.round(PR_frequencies)}\n" f"All peaks' PR values (dB): {np.round(PR_values, 1)}\n" f"All peaks' absolute levels (dB SPL): {np.round(PR_levels, 1)}\n" ) .. rst-class:: sphx-glr-script-out .. code-block:: none Number of tones found: 9 Maximum PR value: 44.6 dB All detected peaks' frequencies (Hz): [ 264. 522. 786. 1050. 1836. 3666. 3930. 6029. 6288.] All peaks' PR values (dB): [38.5 44.6 40.4 9.2 6. 2.7 2.6 0.5 0.5] All peaks' absolute levels (dB SPL): [70.9 79.1 76.7 67.9 72.4 45. 42.2 32.6 35.1] .. GENERATED FROM PYTHON SOURCE LINES 187-188 Plot the PR as a function of frequency. .. GENERATED FROM PYTHON SOURCE LINES 188-190 .. code-block:: Python prominence_ratio.plot() .. image-sg:: /examples/gallery_examples/images/sphx_glr_006_calculate_PR_and_TNR_002.png :alt: Prominence Ratio :srcset: /examples/gallery_examples/images/sphx_glr_006_calculate_PR_and_TNR_002.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 191-192 Recalculate the PR for specific frequencies. .. GENERATED FROM PYTHON SOURCE LINES 192-196 .. code-block:: Python frequencies_i = [261, 525, 786, 1836] prominence_ratio = ProminenceRatio(psd=f_psd, frequency_list=frequencies_i) prominence_ratio.process() .. GENERATED FROM PYTHON SOURCE LINES 197-198 Print information for a specific detected peak. .. GENERATED FROM PYTHON SOURCE LINES 198-209 .. code-block:: Python prominence_ratio_786 = prominence_ratio.get_single_tone_info(tone_index=2) PR_frequency = prominence_ratio_786[0] PR_width = prominence_ratio_786[4] - prominence_ratio_786[3] PR = prominence_ratio_786[1] print( f"\n" f"PR info for peak at ~786 Hz: \n" f"Exact tone frequency: {round(PR_frequency, 2)} Hz\n" f"Tone width: {round(PR_width, 2)} Hz\n" f"PR value: {round(PR, 2)} dB\n" ) .. rst-class:: sphx-glr-script-out .. code-block:: none PR info for peak at ~786 Hz: Exact tone frequency: 785.96 Hz Tone width: 75.37 Hz PR value: 40.4 dB .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 3.208 seconds) .. _sphx_glr_download_examples_gallery_examples_006_calculate_PR_and_TNR.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: 006_calculate_PR_and_TNR.ipynb <006_calculate_PR_and_TNR.ipynb>` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: 006_calculate_PR_and_TNR.py <006_calculate_PR_and_TNR.py>` .. container:: sphx-glr-download sphx-glr-download-zip :download:`Download zipped: 006_calculate_PR_and_TNR.zip <006_calculate_PR_and_TNR.zip>` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_